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Abstract. In this article, we present a universal relationship between the glass transition temperature
Tg and the local glass structure. The derivation of the simplest expression of this relationship and some
comparisons with experimental Tg values have already been reported in a recent letter. We give here
the analytical expression of the parameter β of the Gibbs-Di Marzio equation and also new experimental
probes for the validity of the relationship, especially in low modified binary glasses. The influence of medium
range order is presented and the unusual behavior of Tg in binary B2S3 and P2S5 systems explained by
the presence of modifier-rich clusters (denoted by B−B doublets).

PACS. 61.20.Ne Structure of simple liquids – 81.20.Zx Other methods of materials synthesis and materials
processing

1 Introduction

It is well-known that the formation of glasses requires cool-
ing to a sufficiently low temperature — below the glass
transition — without the occurrence of detectable crys-
tallization. In treating this phenomenon, it is has been
suggested by different authors that specific structural fea-
tures or physical properties will result in glasses being
formed [1–6]. Various models have been proposed in or-
der to describe this transition, which can appear super-
ficially to be a second-order thermodynamic phase tran-
sition. These models generally involve factors (thermody-
namic, structural, kinetic) which are viewed as decisive in
the formation of glasses.

The best known structural model of glass formation
and glass formation ability is that due to Zachariasen [7]
and others [8,9] who proposed a classification of oxide ma-
terials in terms of glass-formers (e.g. SiO2), modifiers (e.g.
Li2O) and intermediates (e.g. PbO). This led to the ran-
dom network concept [10] which received support from
X-ray diffraction studies of a variety of glasses, although
these studies did not establish the model as unique rep-
resentation of the structure [11–13]. In these models, the
relationship with the glass transition temperature is lack-
ing.

The importance of thermodynamic factors in glass for-
mation has been pointed out by Gibbs and Di Marzio
and by Adam and Gibbs [14,15]. These authors suggested
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that the glassy state is thus defined in terms of thermo-
dynamic variables (temperature, volume, ...) and related
ones (bulk compressibility, heat capacity, ...), but it is not
necessarily implied that the glassy state is one of even
metastable equilibrium (with reference to a possible crys-
talline phase). It can be stated that a glass-forming mate-
rial has equilibrium properties, even if it may be difficult to
realize. The theory developed by Adam and Gibbs on this
basis, was able to predict a second-order phase transition
and also a quantitative relationship between glass tran-
sition temperature and the cross-linking density in some
linear molecular chains.

Nevertheless, when the glass transition temperature is
measured under standard conditions (for example calori-
metrically at a fixed heating rate), an important question
concerns the relationship of Tg with some other physi-
cal and measurable factors. Various proposals have been
made in the past which suggested for example that Tg

scales with the melting temperature (the “two-third rule”
proposed by Kauzmann [16]), the boiling temperature, the
Debye temperature of the phonon spectrum, etc. [17]. Be-
sides the influence of these thermodynamic factors, atten-
tion has been brought to structural factors, in particular
to the valence of the involved atoms in the glass-forming
material. Tanaka [18] has given an empirical relationship
between Tg and Z, the average coordination number per
atom: ln Tg ' 1.6Z + 2.3. This proposal agrees for var-
ious glass-forming systems including chalcogenide mate-
rials and organic polymeric materials. However, the rela-
tionship between structural factors and Tg becomes more
complicated if the composition of the glass-forming alloy
is changing. For example, in GexSe1−x network glasses,
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the glass transition temperature does not vary monoti-
cally with x, and exhibit even some characteristic behav-
ior (maximum at x = 0.33 [19], which corresponds to the
stoichiometric composition GeSe2, anomaly at x = 0.2,
where the average coordination number 〈r〉 is equal to
2.4). Obviously, Tg is sensitive to the chemistry involved,
and a maximum in Tg at the stoichiometric composition
may result from the formation of a chemically ordered net-
work in which only the Ge−Se bonds are present. In other
systems, a generally accepted rule states that Tg increases
when the connectivity of the network increases, and vice-
versa. Besides these rather qualitative relationships be-
tween structure and glass transition temperature, there
exists a firm rule for predicting Tg in particular glassy ma-
terials, namely chalcogenide network glasses. The equation
relating the glass transition temperature to some struc-
tural factor is due to Gibbs and Di Marzio [14]. Varshneya
and co-workers have shown recently that a similar equa-
tion was particularly well adapted for predicting Tg in
multicomponent chalcogenide glass systems [20]. Indeed,
one can consider the chalcogenide glass system as a net-
work of chains (e.g. of selenium atoms) in which cross-
linking units (such as germanium atoms) are inserted. The
increase of Tg is produced by the growing presence of these
cross-linking agents, which can be roughly explained by
the growth in network connectivity. In the former version,
Gibbs and Di Marzio successfully applied their equation in
order to explain the Tg data in polymers [21]. A modified
theory constructed by Di Marzio [22] has shown that for
glass systems with some chain stiffness, the glass transi-
tion temperature versus cross-linking density X could be
expressed as:

Tg =
T0

1− κX
(1)

where T0 is the glass transition temperature of the ini-
tial polymeric chain and κ a constant. In this article, we
shall present several relationships between the glass tran-
sition temperature and the local structure in glass-forming
materials, by using the agglomeration model, created by
Kerner and Dos Santos [23] and applied with success to
various glass-forming systems [24]. The physical basis of
the model can be found in references [25,26]. Different
situations will be reviewed in this article and previous re-
sults, reported in [27], will be inserted for completeness.
In Section 2, we present the construction with star-like
entities and obtain the first slope equation for corner-
sharing structures (single bonded network, i.e. absence of
dimers). Comparison with experimental data is presented
in Section 3 for chalcogenide network glasses and for bi-
nary glasses. The relationship with the Gibbs-Di Marzio
equation is also given in a forthcoming subsection. The
influence of other structural contributions, such as the
edge-sharing tendency between two local structures (two-
membered rings, or dimers), which modifies slightly the
slope equation, is presented, as well as the influence of
particular bonds, leading to a second set of slope equa-
tions. These equations can describe the unusual behavior
of Tg in B2S3 and P2S5 based glasses. Finally, Section 4
summarizes the most important results of the paper.

Fig. 1. A schematic representation of a choice of local configu-
rations. a) Possible SRO star-like configurations in SiO2−Li2O
glasses: a “regular” tetrahedron SiO4/2 (a Q(4) structure)

and an “altered” tetrahedron SiO	4/2 (a Q(3) structure). b)
GexSe1−x glass: a “regular” atom Se and an “altered” atom
Ge.

2 Construction with star-like entities

2.1 A very simple structural consideration

For the reader’s convenience, we shall first present the
simplest possible construction of the agglomeration model,
with two star-like entities. The vocabulary introduced in
this section will be illustrated, whenever possible, by two
archetypal glass systems which are binary SiO2 systems
and GexSe1−x glasses.

The simplest way of describing short range order (SRO)
in glasses can be made on the basis of star-like entities
(we shall also call singlets or local configurations [26]).
These local configurations share a central atom and they
provide clear, unambiguous experimental evidence and a
well-defined coordination number (Fig. 1). The nature of
the coordination can eventually be revealed by X-ray or
inelastic neutron diffraction techniques [28,29] which ex-
hibit sharp and characteristic peaks at the corresponding
bond lengths and give information about the number of
nearest possible neighbors of a central atom. Typical ex-
amples are: the tetrahedron which is the lowest possible
SRO structure in glasses such as SiO2 or SiSe2 [29] and
their binary compounds (Fig. 1a), or a two-valenced se-
lenium atom in GexSe1−x network glasses (Fig. 1b) [30].
Starting from a system with a single type of singlet, called
“regular” local configuration, one can modify the system
(and thus the structure) by adding a second kind of star-
like entity, denoted by “altered” local configuration.

In the liquid and supercooled state, and finally in the
glassy state, the probability of finding a “regular” local
configuration A with coordination number m can be de-
noted by p (e.g. SiO4/2 tetrahedra in SiO2−Li2O systems
and of course m = 4), whereas the one related to an
“altered” local configuration B with coordination number
m′ can be denoted by 1 − p. p is a function of temper-
ature. The coordination number m′ can correspond ei-
ther to the valence (in the case where B represents an
atom), or to the number of covalent bonds which connect
the local configuration to the rest of the glass network.
In IV-VI based glasses, the number of coordination can
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be obtained by considering NMR spectroscopy patterns
[31,32]. For example, when adding the modifier Li2O in
SiO2, the number of covalent Si−O−Si bonds decreases,
because of the creation of so-called “non-bridging atoms”
(NBO) due to the high ionicity of lithium (creation of ionic
Li⊕O	 bonds). The local configuration B should be the
SiO	4/2Li⊕ tetrahedron [31], and obviously m′ = 3 (Fig.

1a). The creation of such a new local structure can be
proposed on the basis of 29Si MAS NMR experiments.
The peaks attributed to the SiO4/2 tetrahedra in v−SiO2

(assigned to Q(4) structures in NMR notation where “4”
stands for the number of Si−O−Si bridges on a tetrahe-
dron) are slightly shifted with addition of Li2O, and a
typical chemical shift occurs due to the presence of Q(3)

species (the SiO	4/2 tetrahedron [31]). This chemical shift

is compared to the one obtained from the corresponding
crystalline compound (here the disilicate Li4Si4O10 made
of 100% Q(3)) and identified. Finally, the local structure
in binary SiO2−Li2O systems can be described in terms
of Q(k) functions over the whole concentration range [33]
(where 4 − k is the number of NBO’s on a tetrahedron).
With these examples, it is easy to see that the local con-
figurations A and B can describe very well the structural
change induced by the addition of Li2O in silica based
glasses, at least for small concentrations of Li2O. In the
network glasses AxB1−x, the number of coordination can
be given by the 8 − N rule (where N is the number of
outer shell electrons) [34].

We shall show how the glass transition temperature
varies as a function of m and m′.

The aim of the construction is to evaluate the time
dependence of the local configuration probability, and de-
rive an equation which leads to the stationary régime of
these probabilities [23]. One can reasonably assume that
the variation of p remains important as long as the sys-
tem is in the liquid or the supercooled state, where the low
viscosity still allows the (A, B) configuration interchange
by movement, diffusion, bond destruction and creation or
cation switching (in case of the presence of an alkali mod-
ifier). This in turn, should produce a variation of the local
probability with respect to the time and the temperature.
Although we do not know exactly the relationship between
viscosity and the temporal fluctuations of structure (via
p), one should expect a vanishing of the fluctuations, when
the viscosity has increased markedly with decreasing tem-
perature. Then, the local probabilities reach a stationary
value (no more fluctuations of A and B) and can be iden-
tified with a stable (crystal) or a meta-stable solid (glass)
configuration. When p is very small (corresponding to a
system with high proportion of A configurations), there
are only two possible elementary processes of single bond
formation (Fig. 2), i.e. A−A and A−B, the second doublet
being identical to B−A.

The probabilities of these doublets may be proportional
to the products of the probabilities of singlets, a Boltz-
mann factor which takes into account the energy of cre-
ation of the respective bond formation (i.e. E1 for A−A
and E2 for A−B) and a statistical factor which may be
regarded as the degeneracy of the corresponding stored

Fig. 2. Two possible connections of A and B configurations.
With labelled bridges, there are 2×m×m′ ways to form the
same doublet A−B.

energy, because there are several equivalent ways to join
together two coordinated local configurations [26]. In the
single bond formation, the statistical factor is simply the
product of the corresponding coordination numbers (see
Fig. 2). The probability of finding the constructed doublets
is then:

pAA1 =
m2

Z1
(1− p)2e−βE1 (2)

pAB1 =
2mm′

Z1
p(1− p)e−βE2 (3)

where β stands for 1/kBT with kB the Boltzmann constant
and Z1 is the normalizing factor given by:

Z1 = m2(1− p)2e−βE1 + 2mm′p(1− p)e−βE2 . (4)

We have not considered here the possibility of creation of
a bond between two “altered” configurations B. We shall
indeed first focus our interest either on glass systems with
a very low amount of local configurations B or on systems
which do not possess the ability in creating these bonds.
These situations are observed in glasses with a small con-
centration of modifier, e.g. xLi2O − (1 − x)SiO2 systems
with x < 0.2 (existence of Q(4) and Q(3) species only [31])
or GexSe1−x glasses with x < 0.33 (existence of Se−Se
and Ge−Se bonds only [19]). The influence of B−B bonds
will be presented in a forthcoming section. We have also
excluded the possibility of a simultaneous creation of two
bonds A−A or A−B which leads to the formation of two-
membered rings (dimers); such a possibility does exist in
binary chalcogenide glasses (e.g. SiS2 based glasses), and
will be also taken into account below. Anyhow, the anal-
ysis remains exactly the same. The relative probability of
finding an A configuration among the doublets is then:

1− p(1) =
1

2
(2pAA1 + pAB1). (5)

If one denotes the average time needed to form a new
bond by τ , we can evaluate the time derivative of p:

dp

dt
=

1

τ

[
p(1) − p

]
. (6)

We have neglected the dependence of the cooling rate q =
dT/dt in the equation (6) because network chalcogenide
glasses AxB1−x or binary oxides such as B2O3 or SiO2

based glasses form very easily, and have critical cooling
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Fig. 3. An example of the arrest of the tem-
poral fluctuations of structure. The plot rep-
resents the equation (6) with m = 2, m′ = 4,
E2 − E1 = 0.0189 eV (T0 = 316 K, GexSe1−x

glass) and p = 0.02 (solid line), p = 0.05
(dashed line) and p = 0.10 (dotted line).

rates of the order of 10−4 K s−1 [35–37]. For these systems,
it seems reasonable to neglect an additional cooling term.

In general, the composition of the mix is conserved dur-
ing the cooling process. For example, the concentration x
(and therefore p if one refers to the confgurations) of ger-
manium atoms in GexSe1−x is fixed before the preparation
of the glass. However this does not prevent possible fluctu-
ations provoked by agglomeration (which is characterized
by Eq. (6)). When the temporal variation of the structure
vanishes at Tg (high viscosity state yielding an arrest of
the fluctuations) and t→∞, the above expression should
be equal to 0, which amounts to finding the stationary or
singular solutions of the differential equation (6) (Fig. 3).
This leads to:

p(1− p)

[
m(1− p)(m′e−E2/kBTg −me−E1/kBTg)

− pmm′e−E2/kBTg)

]
= 0. (7)

There are always two singular solutions at the points p = 0
and p = 1; but also a third solution can exist, given by
the following expression:

pam =
mm′e−E2/kBTg −m2e−E1/kBTg

2mm′e−E2/kBTg −m2e−E1/kBTg
· (8)

We do not consider here relaxation processes taking
place just before or at Tg, but we can see how structural
fluctuations behave with T in the vicinity of the stationary
solutions.

Let us consider a fluctuation ξ in the vicinity of the
solution p = 0. The linearized equation (6) reads:

dξ

dt
=

1

τ

(
1−

m′

m
e
E1−E2
kT

)
ξ =

ξ

T
· (9)

If the right-hand side of (9) is negative, the fluctuation ξ
tends to vanish with growing time, and the agglomeration

Fig. 4. The phase diagrams of equation (6): a) m′/m < eα

(phase separation). b) m′/m > eα (glass formation).

process falls on the attractor p = 0. In other words, after a
while, the process is governed at the microscopic level by
A−A agglomeration only (Fig. 4a). This happens when:

m′

m
> e

E2−E1
kT · (10)

In this situation, there is no intermediate solution,
made of A and B configurations. The evolution of the
fluctuation is governed by a characteristic time T (see
Eq. (9)). At some temperature T0, satisfying m′/m =
e(E1−E2)/kT , T → ∞ and the fluctuation ξ needs an in-
finite time to fall again on the attractor p = 0. In the
model, this temperature is identified with the glass tran-
sition temperature. T0 then represents the glass transition
temperature with solution p = 0, which corresponds to
the glass made of 100% A configuration. The glass tran-
sition temperature Tg defined by (8) is defined on the
same way. Note that due to the homogeneity of the ex-
pression (8), only one energy difference is essential here:
α = (E2−E1)/kT and that the absence of a B−B doublet
yields automatically a repulsive solution for p = 1 (there
is no possibility to obtain a structure with 100% B config-
uration). The phase portraits of the differential equation
(6) are shown in Figure 4.
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2.2 The first slope equation

In order to give a more realistic meaning to the solution
(8), we have to relate the probability pam of finding an
“altered” local configuration B, with the modifier concen-
tration x. In the case of network glasses AxB1−x (e.g.
GexSe1−x), the identification is obvious: pam = x. For bi-
nary glass systems (1−x)ArXs+xMqX (or ArXs+RMqX
following the notation), we have to recall the charge con-
servation law [26,38]. The concentration x of M⊕ cations
must be equal to the anionic contribution located on each
particular local configuration, expressed in terms of pam:

1

r
x =

1

q
(1− x)

[
nBpam + nA(1− pam)

]
(11)

where nB and nA are the anionic contributions of the B
and A configurations. The factors q and r are given by the
stoichiometry. For example, in low modified (1−x)SiO2−
xLi2O systems (x < 0.33), equation (11) becomes:

R =
x

1− x
=

1

2
pam (12)

where pam is the probability of finding Q(3) species and R
the reduced concentration [38]. Since x and pam are now
related, there should be various glass formers displaying
a tendency towards the solution pam in a wide range of
modifier concentration, also when it tends to zero (x→ 0,
i.e. pam → 0). In this limit, we can obtain from (8) a
condition concerning the energy difference E2 −E1:

E2 −E1 = k T0 ln

[
m′

m

]
(13)

where T0 is the glass transition temperature previously
introduced and which is related to the solution p = 0. This
corresponds to the limit when the modifier concentration
x goes to zero, corresponding to a pure A glass (v−Se
and T0 ' 316 K) or a pure network former (SiO2 and
T0 ' 1450 K).

This equation exhibits a relation between the statis-
tical and energetic factors that are crucial for the glass
forming tendency to appear. It tells us that in a good bi-
nary glass former whenever m′ > m (and ln(m′/m) > 0),
one should expect E2 > E1, and vice versa, in order to
satisfy (10). This condition is what should be intuitively
expected. Indeed, when a system displays the tendency to-
wards amorphisation, it behaves in a “frustrated” way in
the sense that the two main contributions to the probabil-
ities of doublets act in the opposite directions. Whenever
the modifier raises the coordination number (m′ > m),
thus creating more degeneracy of the given energies Ei
(i.e. much more possibilities of linking the two entities A
and B) and increasing the probability of agglomeration,
the corresponding Boltzmann factor e−E2/kBT is smaller
than for the non-modified atoms, e−E1/kBT , reducing the
probability of agglomeration, and vice versa.

Recalling that the stable solution corresponding to the
glass-forming tendency in (7) defines an implicit function,

Tg(pam), via the relation

Φ(pam, Tg) = m(1− pam)(m′e−E2/kBTg −me−E1/kBTg)

−mm′pam e−E2/kBTg) = 0 (14)

we can evaluate the derivative of Tg with respect to the
reduced concentration R = x

1−x . This idea was first pro-

posed in borate systems some years ago by Kerner [39].

dTg

dR
= −

q

r

[(
∂Φ

∂pam

)
/

(
∂Φ

∂Tg

)]
Φ(pam,Tg)=0

· (15)

In the limit R = 0 (x = 0) the result has a particularly
simple form:[

dTg

dR

]
R=0

=
q

r

[
dpam

dTg

]−1

Tg=T0

(16)

=
q

r

[
(2 (m′/m) e

E1−E2
kTg − 1)2

E2−E1

kT 2
g

]
Tg=T0

·

Inserting the condition (13), we obtain the first slope equa-
tion which is a general relation for binary glasses ArXq +
R MqX and which can be regarded as a universal law:[

dTg

dR

]
R=0

=
q

r

T0

ln

[
m′

m

] · (17)

For network glasses AxB1−x, the following formula has
been obtained in [27]:[

dTg

dx

]
x=0

=
T0

ln

[
m′

m

] · (18)

Equations (17, 18) give the mathematical transcription of
the well-known rule mentioned at the beginning of this
article [40]. The glass transition temperature Tg increases
with the addition of a modifier that increases the local
coordination number (m′ > m) (e.g. B2O3 based glasses
[41] or GexSe1−x [19]), and decreases with the addition of
a modifier that decreases the local coordination number
(m′ < m) (e.g. SiO2 based glasses [42]).

3 Application and discussion

The equations (17, 18) can be quite easily compared with
the experimental data. We compare the slope at the ori-
gin x = 0 (R = 0) with a set of experimental data among
which the T0 value and a Tg measurement for the low-
est possible concentration x (or R), in order to produce
approximate linearity, to be compared with the constant
slope of (17, 18). Therefore, we have tried to find, when-
ever possible, reported glass transition temperatures of
glass-forming systems which were composed of a very high
fraction of “regular” local configurations A (e.g. Q(4)



282 The European Physical Journal B

Fig. 5. (a) A selenium chain. (b) A selenium chain with a
cross-linking silicon atom.

species in SiO2 − Li2O or Se atoms in GexSe1−x). The
lowest possible concentration is close to 5% in most cases,
so that we can roughly approach the limit value x → 0
of formula (17, 18). From the Tg and T0 values, we can
compute an “experimental value” of m′/m and compare
it to the theoretical one, deduced from purely structural
considerations. In reference [43], Kerner has demonstrated
a good agreement of a close relationship with the behav-
ior of dTg/dx at x = 0 for the alkali-borate glass (1 −
x)B2O3−xLi2O and the silicate glass (1−x)SiO2−xCaO.
He predictedm′/m ' 3/2 in the first case, which leads to a
positive derivative, and m′/m ' 1/3 giving a negative one
in the second one. Nevertheless, the formula was incom-
plete because the factor q/r was missing, but the obtained
values were correct since q/r = 1 in these systems.

3.1 Single-bonded systems

3.1.1 Chalcogenide network glasses

Various experimental probes for equation (18) can be ob-
tained in very simple simple glass forming systems, namely
chalcogenide network glasses, for which numerous exper-
imental data are available in the literature, and m = 2.
For completeness, we report some values which have al-
ready been presented elsewhere [27]. We have extended
the list of investigated systems in order to prove beyond
any doubt that the impressive agreement of (18) with ex-
perimental data is not a matter of coincidence. Within
the ranges (close to x = 0, whenever possible) found in
various references, the formula agrees very well with the
experimental data for the sulphur, tellurium and selenium
based glasses (Tabs. 1 and 2). Indeed, the computation of
the slope of Tg at x = 0 obtained from the measured glass
transition temperatures, leads to experimental values of
m′/m, which in turn can be compared to the predicted
ones, e.g. m′/m = 2 in GexSe1−x glasses or m′/m = 3/2
in AsxS1−x systems. The structural change induced by the
growing proportion of a modifier atom is obvious here. At
x = 0, the two-valenced atoms (m = 2) of the VIth group
form a network of chains with various length; this is par-
ticularly clear in vitreous selenium. For very low x con-
centration, the atoms of modifier (Ge, As, Si, ...) produce
cross-linking between the chains as suggested by Boolc-
hand and Varshneya [53,54], thus creating a new stable
structural unit with coordination number m′ = 4 for ger-
manium or silicon atoms (Fig. 5), or m′ = 3 for arsenic.

For the computation of the rates m′/m, we have used
standard T0 values, found in the literature, or averaged

Table 1. Different tellurium and sulphur based glasses. Com-
parison between the theoretical value of m′/m and the exper-
imental value of m′/m deduced from the slope using data of
Tg for the lowest available concentration x. T0 has been taken
as 343 K in tellurium and 245 K in sulphur.

Compound
(
m′

m

)
th

(
m′

m

)
exp

Obtained from Reference

x Tg[K]

SixTe1−x 2.0 2.11 0.10 389 [44]

GexTe1−x 2.0 1.97 0.15 419 [45]

GaxTe1−x 1.5 1.45 0.20 528 [46]

AsxS1−x 1.5 1.54 0.11 307 [47]

GexS1−x 2.0 1.72 0.10 290 [48]

Table 2. Different selenium based glasses. Comparison be-
tween the theoretical value of m′/m and the experimental value
deduced from the slope using data of Tg for the lowest available
concentration x. T0 has been taken as 316 K.

Compound
(
m′

m

)
th

(
m′

m

)
exp

Obtained from Reference

x Tg[K]

GexSe1−x 2.0 2.04 0.05 336 [19]

SixSe1−x 2.0 2.04 0.05 336 [49]

AsxSe1−x 1.5 1.54 0.003 318 [50]

SbxSe1−x 1.5 1.31 0.15 493 [51]

PxSe1−x 2.5 2.53 0.05 333 [52]

over a set of reported glass transition temperatures, so
T0 = 316 K for selenium [40], T0 = 245 K [40] for sul-
phur and T0 ' 343 K for tellurium [45]. As mentioned
above, the sign of the derivative of Tg with respect to x
depends on the sign of ln(m′/m). In all reported chalco-
genide glasses, the rate m′/m is greater than one, the sys-
tems display therefore an increase of the glass transition
temperature with increasing x, starting from T0. Different
systems are represented in Figure 6 and show that the lin-
ear approximation of (18) can give a correct estimation of
Tg up to x ' 0.4 in certain glass formers, e.g. AsxS1−x,
whereas the substantial increase of Tg in GexSe1−x sys-
tems yields a satisfying description only for x ≤ 0.15.

A problem arises in the systems for which the glass-
forming region can not be extended towards x = 0 (ex-
istence of a minimal value of x for the glass-forming re-
gion); it is obvious that our formula can not be applied
when glass can not be formed in the limit x = 0. Never-
theless, the formula can sometimes be extrapolated down
to x = 0, when the variation of Tg versus x is linear for
greater values of x. For example, the (m′/m) value shown
in Table 1 for GaxTe1−x glasses has been obtained by this
method, because Tg exhibit linearity over a wide range of
x and can be extrapolated linearly down to T0 [46]. The
constant slope allows then a comparison with (18).
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Fig. 6. Glass transition temperature (in K)
versus concentration x for typical glass sys-
tems, AsxS1−x [2], PxSe1−x [◦] and GexSe1−x

[+]. The plotted values are reported in
[20, 47, 52]. The straight lines correspond re-
spectively to the equations Tg = 245(1 +

x
ln(3/2) ) (solid line), Tg = 316(1 + x

ln(5/2) )

(dashed line) and Tg = 316(1 + x
ln(2) ) (dotted

line).

Fig. 7. Glass transition temperature (in K) of
(1 − x)SiO2 − xNa2O [3] and (1 − x)SiO2 −
xK2O [2] systems versus the concentration x.
The line represents the slope equation Tg =
1463(1 + 2x

(1−x) ln(3/4)
) The plotted Tg data are

taken from [42, 56].

3.1.2 Binary glasses

As pointed out in reference [43], the slope equation (17)
seems to be supported in binary glass-formers. The most
common single-bonded systems are the oxide binary
glasses which use the typical network formers such as
SiO2, GeO2, P2O5 or B2O3. The structural change which
occurs when adding a modifier is well understood in terms
of the modified random network concept [55]. It suggests
that when alkali oxide is introduced into the glass for-
mer, the network is depolymerized through the forma-
tion of sites bearing non-bridging oxygens (NBO). Indeed,
each molecule of the modifier M2O [M = Li,Na,K, ...]
creates two ionic O	M⊕ sites in the network, thus con-
verting the covalent or partly covalent network into a
size-decreasing structure. For large amounts of modifier,

the structure generally reduces to isolated ionic species
(e.g. SiO4	 units, the amorphous analogue of orthosili-
cates [33]).

• SiO2 based glasses

In silica based glasses, the creation of Q(3) species with
three covalent bridges (m′ = 3) is proposed when adding a
modifier. Therefore m′/m = 0.75 in these systems. Table 3
show a very good agreement of (17) with the experimental
data for various types of modifier.

Since this glass can form continuously down to x = 0
(R = 0), it is possible to find Tg measurements for very
low concentrations, yielding a better agreement with the
predicted value of m′/m reported in the table. One can
also remark that the dramatic decrease of the glass tran-
sition temperature when adding a very few modifiers can
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Table 3. The m′/m rate deduced from experimental data,
compared to the theoretical value of 0.75 in SiO2 based glasses,
with the average value of T0 = 1463 K.

System Na2O K2O Rb2O PbO(
m′

m

)
exp

0.75 0.78 0.66 0.74

obtained from the extra-

concentration x 0.05 0.05 0.08 polation

Reference [42] [56] [57] [58]

be mathematically explained by the presence of the factor
T0 in the slope equation (Fig. 7).

The higher the initial glass transition temperature T0

of the network former, the more pronounced will be the de-
crease of Tg. Of course, silica based glasses, which has one
of the highest T0 values among glass materials, show this
characteristic feature very well. The fabrication of glass
by ancient Egyptians is due to this fact. With the heating
techniques of that time, it was impossible to form glass
from the desert sand, made almost of pure SiO2. Never-
theless, with the addition of 10 to 20% of K2O, obtained
from the ashes of burned algae, they could produce it quite
easily, because of the sharp decrease of the glass transition
temperature.

• GeO2 based glasses

Another system behaves very similarly to the silica
based glasses, namely GeO2−M2O systems. It has been
extensively studied because of its unique physical prop-
erties, such as the so-called “density anomaly”. Ivanov
and Estropiev first reported [59] that the density of these
glasses increases with the addition of alkali oxide. Fur-
ther studies showed that density, as well as refractive in-
dex reach a maximum around 15−16% added Na2O and
then decrease [60–62]. Numerous structural studies have
been carried out in order to elucidate the reason for this
anomaly, leading to suggestions of the presence of GeO6

octahedra within the network [63] in order to explain the
density maximum. However, recent EXAFS studies [64]
have clearly shown that pressure-induced coordination
changes in v−GeO2 are reversible and that Ge(6) should
not be observed at room pressure. Other authors believe
that the anomaly should result from an alternative struc-
tural reorganization [65]. Micro-Raman experiments have
been performed and results have been obtained in this
sense: the increase of the density with a low amount of
modifier can be related to the existence of rings of partic-
ular sizes, namely 4- and 3-membered rings, the growing
proportion of the latter one being responsible of the den-
sity anomaly [66].

From the available data, we can obtain the m′/m rate
which is very close to 0.75 in most of the systems (Tab. 4).
This suggests that for a very small concentration of mod-
ifier M2O, the coordination number of the basic GeO4/2

tetrahedra changes into m′ = 3, as in the silicate glass
(Fig. 8a). But in contrast with the latter glass system, the
proportion of Q(3) structures does not increase any more

Table 4. The m′/m rate deduced from experimental data,
compared to the theoretical value of 0.75 in GeO2 based
glasses, with the average value of T0 = 820 K.

System Li2O K2O Rb2O Cs2O(
m′

m

)
exp

0.85 0.73 0.71 0.68

obtained from the

concentration x 0.01 0.02 0.02 0.02

Reference [67] [68] [68] [68]

Fig. 8. a) IV-VI binary glasses. The SRO structures are the
Q(4) and Q(3) tetrahedra and eventually the Q(2) tetrahedra
with two non-bridging atoms (m = 4, m′ = 3). b) SRO struc-
tures of a boron glass. A BX3/2 triangle (X = O,S) and a
four-coordinated boron (N4 unit) (m = 3, m′ = 4). c) SRO
structure of phosphor based glasses P2X5 (X = O,S) (m = 3,
m′ = 2). d) Possible MRO in B2O3 based glasses. The boroxol
ring (m = 3) and the tetraborate group (m′ = 5).
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when x is growing, as shown indirectly in Figure 9. In-
deed, the glass transition temperature shows a minimum
around x = 0.02 and then increases. The positive deriva-
tive of Tg versus x for x > 0.02, means that the local
coordination number of the “altered” configuration is now
greater than that of the “regular” configuration (supposed
to be composed of a mixture of Q(3) and Q(4) structures),
thus confirming the growing presence of GeO6 octahedra
(with m′ = 6). Note that the crystalline form of GeO2 has
the rutile structure, composed of GeO6 octahedra, and
that the nucleation of such units appears to take place at
larger values of x > 0.02, where the Porai-Koshits picture
[12] becomes possible.

• P2O5 based glasses

Other glass systems display the same agreement be-
tween the predicted value of m′/m and the one obtained
from experimental data [69–71]. This is realized in P2O5

based glasses. The available Tg measurements of
(1−x)P2O5−xM2O systems are represented in Figure 10
and compared to the equation Tg = T0[1+ x

1−x
1

ln 2/3 ]. The

rate of m′/m should be equal to 2/3 in these glass sys-
tems (Fig. 8c). The basic network former P2O5 is made of
phosphor tetrahedra with four P−O bonds, among which
one is double bonded, so that it is not connected to the
rest of the network, therefore m = 3 (Q(3) structure). At
the beginning, the addition of a modifier produces the
usual creation of one NBO, as in silicate and germanate
glasses (Q(2) structure, m′ = 2). The rate of this struc-
ture is increasing with the modifier concentration and
reaches unity for x = 0.5, yielding the metaphosphate
chain structure, made of corner-sharing polymeric PO	4
tetrahedra [72]. On this basis, we predict Tg = 620 K for
the 0.98 P2O5−0.02 Li2O glass, when T0 = 653 K [71].

• B2O3 based glasses

All the data presented up to now exhibit a decrease of
Tg with growing modifier concentration x, in agreement
with the slope equation (17) and the currently accepted
rule which states that the increase of the coordination
number (i.e. the connectivity of the network) produces
an increase of the glass transition temperature. The well-
known symmetrical example of this rule is given by the
B2O3 based glass, which presents a positive derivative of
Tg at the origin [41]. The addition of M2O [M = Li,Na, ...]
transforms the BO3/2 triangles (m = 3), which represent

the basic SRO structural unit of B2O3, into BO	4 tetrahe-
dra (m′ = 4, N4 species [73], Fig. 8b). The linear increase
of Tg versus the modifier concentration in these glasses is
explained by the conversion of a three-valenced network
into a four-valenced one, thus increasing the connectivity
[74]. The nature of the cation M⊕ seems to have no influ-
ence for low concentration, when Tg ' T0 [41]. Systems
with the same concentration but with a different modifier
cation, display still very close Tg data (Fig. 11). The rate
of N4 species is growing linearly with R up to R ' 0.5
whatever the involved M⊕ cation [38]. For R > 0.5, the
glass transition temperature decreases due to the growing
presence of BO	3/2 triangles sharing one NBO (m′ = 2)

[41]. When comparing the rate m′/m obtained from ex-
periments with the theoretical one derived from the local
structure consideration, one obtains m′/m = 1.63 in-
stead of 4/3 = 1.33.

Nevertheless, an alternative structural proposal sup-
ports the experimental value of 1.63 ' 5/3. The structure
of B2O3 is indeed a typical example of well-characterized
medium-range order. There is a strong experimental ev-
idence for the existence of larger structural groups than
the local SRO BO3/2 triangles, namely the boroxol ring
B3O3, made of three connected BO3/2 triangles [75–78].
The spectroscopic patterns of Raman investigation, NMR
and neutron diffraction exhibit for this compound, sharp
and well-characterized peaks, which can be attributed ei-
ther to the breathing modes of the oxygens inside the
boroxol ring (in case of Raman studies, at 808 cm−1 [79,
80]) or to the B−O−B bond length inside a boroxol ring
(in the case of diffraction [28,77]). Whatever the propor-
tion of this structural unit in the network former (0.8 is the
currently accepted value [75–78]), the coordination num-
ber remains m = 3. The addition of the modifier leads to
the creation of the so-called tetraborate group, even at the
very beginning [73]. This structural group is made of sev-
eral three-membered rings (as the boroxol group) sharing
N4 species, with coordination number m′ = 5. This yields
a rate of m′/m = 1.67 (Fig. 8d).

3.2 Relationship with the Gibbs-Di Marzio equation

We have mentioned at the beginning of this article that
Gibbs and Di Marzio have given a formula relating Tg

to some structural factor, on the basis of thermodynam-
ical considerations (Eq. (1)). Varshneya and co-workers
have modified this equation in order to test its validity on
chalcogenide network glasses [20,81]. These systems sat-
isfy all the required conditions of Gibbs and Di Marzio’s
model, namely the presence of polymeric atomic chains
(as Se chains in v−Se) which can be cross-linked by other
atomic species, such as germanium. They have expressed
Tg in terms of the network average coordination number
〈r〉, rather than the concentration x. 〈r〉 is widely used for
the description of network glasses since Phillips and oth-
ers have introduced this concept in the constraint theory
[82]. Varshneya et al. have redefined for multicomponent
chalcogenide glasses the cross-linking density X of Gibbs
and Di Marzio equation (1) as being equal to the average
coordination number of the cross-linked chain less the co-
ordination number of the initial chain, i.e.: X = 〈r〉 − 2,
and the Gibbs-Di Marzio equation can in this situation be
rewritten as:

Tg =
T0

1− β(〈r〉 − 2)
(19)

where β is a system dependent constant, whereas it was
suggested that the constant κ of the initial equation (1) is
universal [22]. Sreeram et al. fitted the constant β to their
Tg measurements by least-squares fit [81] and obtained a
value which depends on the considered system and the
atoms involved.
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Fig. 9. Glass transition temperature (in K)
versus the concentration x in (1 − x)GeO2 −
xM2O glasses with M = Li [2], K [3] and
Rb [+]. The line represents the equation Tg =
820(1+ 2x

(1−x) ln(3/4)
). The data are reported in

[67, 68].

Fig. 10. Glass transition temperature (in K)
of (1 − x)P2O5 − xM2O glasses versus modi-
fier concentration x with M = Li [2], Pb1/2

[3]. The lines represented correspond to Tg =
653(1 + x

(1−x) ln(2/3) ) (solid line, M = Li) and

to Tg = 588(1 + x
2(1−x) ln(2/3)

) (dotted line,

M = Pb1/2). The plotted data are given in
references [69, 71].

The slope equation (18) can be related to the Gibbs-
Di Marzio equation in the pure chalcogen limit and gives,
after identification, an analytical expression for β.

According to Phillips [82], one can express the aver-
age coordination number 〈r〉 in terms of the coordination
number of the covalently bonded atoms, i.e. the coordina-
tion numbers m and m′ of the A (chalcogen atom) and B
configuration (modifier atom)

〈r〉 = 2(1− x) +m′x. (20)

The slope at the origin, where x = 0 (and 〈r〉 = 2) is then:[
dTg

d〈r〉

]
〈r〉=2

=
T0

(m′ − 2) ln m′

2

· (21)

In the vicinity of the pure chalcogen region (x → 0), a
first order development of the Gibbs-Di Marzio equation

has the following form:

Tg ' T0

[
1 + β (〈r〉 − 2)

]
(22)

which leads by identifying (21, 22) to an analytical ex-
pression of the constant β, involving only the coordination
number m′ of the modifier atom.

1

β
= (m′ − 2) ln(

m′

2
)· (23)

The value of β can now be computed for different glass
systems for which the coordination number of the mod-
ifier atoms are well-known, e.g. for chalcogenide based
glasses. The possible values for β are 0.36 (for m′ = 5),
2.47 (for m′ = 3) and 0.72 (for m′ = 4). The latter situa-
tion corresponds to the glass GexSe1−x and the agreement
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Fig. 11. Glass transition temperature (in K)
versus the concentration x in (1 − x)B2O3 −
xM2O glasses, with M = Li [o], Na [2], K [+],
Rb [3] and Cs [.]. The lines represent the equa-
tions Tg = 530(1 + x

(1−x) ln(5/3) ) (dotted line)

and Tg = 530(1+ x
(1−x) ln(4/3) ) (solid line). The

plotted values are taken from [41].

Table 5. Computed values of the constant β of the modified
Gibbs-Di Marzio equation, obtained from a least-squares fit, for
different chalcogenide glass systems. They can be compared to
β = 0.72 (m′ = 4) or β = 0.36 (m′ = 5). Some data are taken
from [27].

System βfit Correlation Reference

coefficient

GexSe1−x 0.74 0.993 [19]

GexSe1−x 0.72 0.988 [20]

GexSe1−x 0.65 0.993 [81]

GexS1−x 0.73 0.998 [48]

SixSe1−x 0.81 0.997 [49]

PxSe1−x 0.14 0.902 [52]

of β = 1
2 ln 2 = 0.72 with the value obtained by a least-

squares fit of the glass transition temperatures data versus
〈r〉, is very good and close to the measurements of Varsh-
neya and co-workers. Other IV-VI systems behave very
similarly, as seen in Table 5. However, expression (23) is
valid for binary network glasses only, but we believe that it
can be generalized for multicomponent chalcogenide net-
work glasses, involving at least three different types of
atoms.

3.3 Other structural contributions

3.3.1 Edge-sharing tendency

One of the possible corrections of the equation (17) can be
produced by the influence due to the edge-sharing charac-
ter of the local configurations. Binary chalcogenide glasses
are the most representative systems of such a tendency.
They form two-membered rings (dimers) very easily and

the fraction of dimers can be either very low (such as in
P2S5 [83]) or very high as in SiS2 based glasses [32]. In-
deed, the proposed long range structure in these latter
systems is a chain of polymeric edge-sharing SiS4/2 tetra-
hedra which are cross-linked by corner-sharing tetrahe-
dra [84,85]. Thus, one can consider that the local glass
structure of SiS2 and SiSe2 is made of pure edge-sharing
SiX4/2 tetrahedra. This result has been given by Ten-
hover on the basis of NMR spectroscopy [84], but also ob-
tained by Sugai (Raman investigation and modelization)
[86], Vashishta and co-workers (molecular dynamics) [87]
and Gladden and Elliott (radial distribution function cal-
culation) [29]. We have seen that the statistical factors
which appeared at the very beginning of the construction
in the expression of the probabilities of doublets (2, 4)
are responsible for the presence of the term ln(m′/m) in
(17, 18). If there is an edge-sharing tendency, the number
of ways in joining together two singlets will be different
and will modify the logarithmic expression.

The number of ways of joining by edges a singlet A with
coordination number m with a singlet B with coordination
number m′ is 2× 2× (m2 )×

(
m′

2

)
in three dimensions and

the probabilities can be rewritten in the pure edge-sharing
situation as:

pAA2 =
2

Z2

[
m(m− 1)

2

]2

(1− p)2e−βE1+βEe (24)

pAB2 =

=
4

Z2

[
m(m− 1)

2

][
m′(m′ − 1)

2

]
p(1− p)e−βE2+βEe (25)

where Ee is an energetical correcting factor which takes
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into account the fact that the energy stored in an edge-
sharing doublet is not equal to a single bond energy Ei.

Z2 = 2

[
m(m− 1)

2

]2

(1− p)2e−βE1+βEe

+ 4

[
m(m− 1)

2

][
m′(m′ − 1)

2

]
p(1− p)e−βE2+βEe . (26)

The construction is performed along the same scheme as
equations (5-7). The amorphous singular solution is given
by:

pam =

=
m′(m′ − 1)(m− 1)e−E2/kT −m(m− 1)2e−E1/kT

2m′(m′ − 1)2e−E2/kT −m(m− 1)2e−E1/kT
(27)

which exists only if:

m′(m′ − 1)

m(m− 1)
> e(E2−E1)/kT (28)

and the general feature of the phase diagram (Fig. 4) re-
mains the same in this situation. The solution can be, as
before, examined in the limit condition (x→ 0 or R→ 0),
where the pure A-network exists and pam → 0. This yields
the energy difference:

E2 −E1 = kT0 ln

[
m′(m′ − 1)

m(m− 1)

]
(29)

where T0 is still the glass transition temperature of a pure
A configuration glass, but with pure edge-sharing local
configurations. One should note that the energetical cor-
recting factor Ee does not appear in (27) and in the forth-
coming equations. The slope at the origin is then conse-
quently modified, but the derivation of the slope equation
remains similar to the one presented above:[

dT

dR

]
R=0

=
q

r

T0

ln

[
m′(m′ − 1)

m(m− 1)

] · (30)

Unfortunately, there are very few experimental data at
our disposal in systems displaying a strong edge-sharing
tendency, because they seem very difficult to form for very
small modifier concentrations [88–90]. This is due to the
strong edge-sharing tendency which is also responsible for
crystallization ease [32].

Nevertheless, some data are represented in Figure 12
and they concern SiSe2 and SiS2 based glasses. As ex-
plained above, these systems possess a high proportion of
dimers in the basic network former and some of the previ-
ously cited theoretical and experimental studies propose
an approximate fraction of dimers of 53%, in terms of E(k)

NMR functions [84–86] (E(k) is identified with a tetrahe-
dron sharing k common edges with its neighbors, hence k
runs from 0 to 2). The currently accepted repartition of
the E(k) functions for SiX2 (X = S,Se) is: E(2) = 0.29,

E(1) = 0.48, E(0) = 0.23. Figure 12 displays the available
experimental data about the binary chalcogenide systems.
The different straight lines using the slope equation (30)
and corresponding to possibilities of structural modifi-
cation are also plotted. The solid line corresponds to a
pure corner-sharing situation (with m = 4 and m′ = 3),
whereas the dotted and dashed lines represent a pure edge-
sharing situation slope equation with respectively m = 4
and m′ = 2, and m = 4 and m′ = 3. Although precise in-
formation about the glass transition temperature is lack-
ing in the very low modification regime (low x concentra-
tion) [88–90], one can observe that a Q(4) → Q(3) conver-
sion (solid line in Fig. 12) using pure corner-sharing tetra-
hedra (slope Eq. (17) with m = 4 and m′ = 3) seems not
adapted for the description of Tg at the origin x = 0. The
two other possibilities seem more accurate and also sup-
port what is proposed on the basis of NMR spectroscopy
by Eckert [91] and Martin [92]. In SiS2−Li2S glasses, the
addition of lithium sulphide produces the conversion of
Q(4) into Q(2) species (a structure with two non-bridging
sulphur atoms, i.e. a tetrahedron SiS2	

4/2), thus producing

a growing rate of the Li2SiS3 phases, identified with Q(2)

edge-sharing dimers (the HT form of c−Li2SiS3 [91]) and
Q(2) corner-sharing polymers (the LT form of c−Li2SiS3

[91]). At x = 0.5, the edge-sharing tendency remains im-
portant, the ratio of the HT and LT phases is 1:3 [91]. No
characteristic signature of a lithium dithiosilicate phase
is observed on the NMR spectroscopy patterns (the crys-
talline Li4Si4S10 phase), even at a concentration where
this compound should be expected (at x ' 0.3, if one
refers to the oxide analogous glass [31]). The same hap-
pens for the selenide glass. The structural modification
imposed by the presence of Li2Se is similar to the sulphide
system. The basic tetrahedra Q(4) are converted into Q(2)

tetrahedra and a Li2SiSe3 phase occurs, made of almost
100% corner-sharing Q(2) tetrahedra [91].

For these two systems, the slope equation (30) with
m = 4 and m′ = 2 seems best adapted and Figure 12
confirms more or less this structural scenario.

In contrast with the lithium glass, it is possible to ob-
serve a spectroscopic signature of a Na4Si4S10 phase in
the (1 − x)SiS2 − xNa2S glasses, confirming the presence
of Q(3) units (a SiS	4/2Na⊕ tetrahedron), as suggested by

Pradel [93]. On this basis, a reasonable structural conver-
sion is Q(4) → Q(3) for very low x concentration (dashed
line in Fig. 12). The rate of edge-sharing structures is not
decreasing when x is growing and it is still equal to 0.5
at x = 0.5 [90]. Therefore, one should propose for these
binary systems the pure edge-sharing slope equation with
m = 4 and m′ = 3 (shaded line in Fig. 12), which seems to
agree with the experimental data of Na2S− SiS2 systems.
However, a glass transition measurement for the concen-
tration x = 0.05, or lower, is missing, but it should cer-
tainly be useful in order to give information about the lo-
cal structural modification. On the basis of what has been
described above, we propose for x = 0.05, Tg ' 616 K in
the sodium sulfide glass and Tg ' 683 K in the lithium
sulfide one.
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Fig. 12. Glass transition temperature (in K)
of (1 − x)SiS2 − xM2S, M = Li [2] M = Na
[♦] and (1− x)SiSe2 − xLi2Se glasses [+]. The
represented lines correspond to Tg = 726(1 +

2x
(1−x) ln(3/4) ) (solid line, pure corner-sharing

and m′ = 3), Tg = 726(1 + 2x
(1−x) ln(2/12)

) (dot-

ted line, pure edge-sharing and m′ = 2) and
Tg = 726(1 + 2x

(1−x) ln(6/12) ) (shaded line, pure

edge-sharing and m′ = 3). The data are taken
from [88-90].

In other chalcogenide glasses, the rate of edge-sharing
structures is much lower. Typical glasses displaying a non-
negligible edge-sharing tendency are the Sb2S3 [94],
As2S3 [95] or GeX2 (X = S,Se) [96] binary glasses, for
which numerous experimental measured glass transition
temperatures are also available. In the case of a mixture
of corner- and edge-sharing structures, one must use the
doublet probability:

1− p(1) =
1

2

[
2(pAA1 + pAA2) + pAB1 + pAB2

]
(31)

where pAA1, pAA2, pAB1 and pAB2 are the probabilities of
doublets which have been defined above. The slope equa-
tion is obtained as previously:[

dTg

dR

]
R=0

=
q

r

T0

ln

[
m′

m

]
+ ln

[
2 + λ(m− 1)(m′ − 1)

2 + λ(m− 1)2

] (32)

where λ = e−Ee/kBT0 uses the energetical correcting fac-
tor Ee, if one assumes that the rate of corner- and edge-
sharing structures remains roughly constant in the low-
modified régime. λ can be related to the rate of edge-
sharing doublets:

η =
pAA2

pAA1 + pAA2
=

(m− 1)2λ

2 + (m− 1)2λ
· (33)

Figure 13 shows a typical example of such intermediate
systems and gives information about the rate of edge-
sharing structures (dimers) in the chalcogenide binary
glasses (1 − x)As2S3 − xTl2S. In the As2S3 based glass,
the line using the slope equation (32) with η = 0.65 has
best agreement with experimental data. The rate of dimers
should therefore be about 0.65 in this glass, according to
Figure 13. As before, we believe that a Tg measurement
for x ≤ 0.05 should give more precise information and
improve the estimation of η.

3.3.2 Influence of B-B bonds. The second slope equations

In the first consideration of section 2, the model has been
constructed only with A−A and A−B doublet agglom-
eration. It corresponds to the most common situations
where only a very few “altered” configurations should be
expected when the starting structure made of almost “reg-
ular” configurations A is slightly modified (low x con-
centration). Therefore, no B−B bonds were considered.
The presence of these bonds at the very beginning of the
modification (i.e. the tendency of a system to create such
bonds, even when there are very few B configurations)
can of course substantially change the thermal behavior
of the glass (and the final Tg) and modify the slope equa-
tions. The construction presented in the previous section
corresponded to a situation where a defect (the B con-
figuration created by a modifier) was diluted inside the
whole structure, thus leading to A−B and A−A doublets
only. This seems adapted for the description of binary ox-
ide glasses or network glasses. If the oxide ion is replaced
by a larger and more polarizable ion, such as the sulfide or
the selenide ion, the local environment of a configuration,
composed of electron-rich ions (S, Se) and modifier cations
(M⊕) may favour the occurrence of local B−B bonds.

With the notations introduced in Section 2, the prob-
ability of finding a pure single-bonded B doublet is:

pBB1 =
m′

2

Z1
p2e−βE3 (34)

where E3 is the B−B bond energy and the Z ′1 the new
normalizing factor:

Z ′1 = m2(1− p)2e−βE1

+ 2mm′p(1− p)e−βE2 +m′
2
p2e−βE3 . (35)
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Fig. 13. Glass transition temperature of (1 −
x)As2S3 − xTl2S glasses. The solid lines cor-
respond to the pure edge-and corner-sharing
situations, using the slope equations (30, 17).
Data are taken from [95]. Intermediate situa-
tions are plotted and correspond to (λ = 0.1,
η = 0.17, dotted line) and (λ = 0.7, η = 0.58,
dashed line).

pam =
mm′(m− 1)(m′ − 1)e−E2/kBTg −m2(m− 1)2e−E1/kBTg

2mm′(m− 1)(m′ − 1)e−E2/kBTg −m2(m− 1)2e−E1/kBTg −m′2(m′ − 1)2e−E3/kBTg
· (38)

In the pure edge-sharing situation, the probability has the
following expression:

pBB2 =
2

Z ′2

[
m′(m′ − 1)

2

]2

p2e−βE3+βEe · (36)

The stationary solution of equation (6) is changed and
depends on the energy E3. Two energetical differences are
now involved: E3 −E2 and E1 −E2.

pam =

=
mm′e−E2/kBTg −m2e−E1/kBTg

2mm′e−E2/kBTg −m2e−E1/kBTg −m′2e−E3/kBTg
(37)

(see equation (38) above).

Equation (37) corresponds to the solution of (6) in a pure
corner-sharing situation, whereas (38) is the solution of
the pure edge-sharing situation. The glass formation oc-
curs only if pam is attractive, which happens when two
conditions are satisfied, namely:

m′

m
> eα

m

m′
> eβ (39)

or, in the pure edge-sharing situation:

m′(m′ − 1)

m(m− 1)
> eα

m(m− 1)

m′(m′ − 1)
> eβ (40)

with α = (E2 −E1)/kBT and β = (E2 −E3)/kBT . When
B−B doublets are involved, p = 1 can be attractive when
the second inequality of (39) or (40) is not satisfied. In the

limit of pam → 1 (corresponding to the pure B configu-
ration network), it is possible to obtain an expression for
E2 −E3, similarly to (13)

E2 −E3 = kBT1 ln

[
m

m′

]
(41)

or following the situation (corner or edge-sharing):

E2 −E3 = kBT1 ln

[
m(m− 1)

m′(m′ − 1)

]
(42)

where T1 is the glass transition temperature of the pure
B glass network (e.g. when x = 0.33, the network of
(1− x)SiO2 − xNa2O is supposed to be composed of Q(3)

structures only [31] and T1 ' 445 oC [42]). The implicit
function Φc

2(pam, Tg) for the corner-sharing situation is
here:

Φc
2(pam, Tg) = pam

[
2mm′e−E2/kBTg

−m′
2
e−E3/kBTg −m2e−E1/kBTg

]
+m2e−E1/kBTg −mm′e−E2/kBTg = 0 (43)

and for the edge-sharing situation:

Φe
2(pam, Tg) = pam

[
2mm′(m− 1)(m′ − 1)e−E2/kBTg

−m′
2
(m′ − 1)2e−E3/kBTg −m2(m− 1)2e−E1/kBTg

]
+m2(m− 1)2e−E1/kBTg −mm′(m− 1)(m′ − 1)e−E2/kBTg

= 0. (44)
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Fig. 14. Glass transition temperature (in K)
of (1 − x)B2S3 − xM2S glasses with M = Na
[2] and K [o]. The solid line corresponds to
the slope equation (45) with m = 3, m′ = 4,
T0 = 583 K and T1 = 449 K (for sodium sys-
tems). Data are taken from [99]. The dotted
line represents a modified slope equation using
Martin’s correcting factor α = 7.82 [92] for Na
based glasses.

Fig. 15. The dithioborate group proposed as possible MRO
structure in B2S3 −M2S glasses [92]. This structure is made
of corner-sharing B−B doublets (N4 species).

The application of (15, 16) with the two limit conditions
(when pam → 1 and pam → 0) presented in (13) and (41),
leads to the second set of slope equations:

[
dTg

dR

]
R=0

=
q

r

T0

ln

[
m′

m

][1−(m
m′

)T1−T0
T0

]
(45)

in the pure corner-sharing situation and with (29, 42):

[
dTg

dR

]
R=0

=

=
q

r

T0

ln

[
m′(m′ − 1)

m(m− 1)

][1−( m(m− 1)

m′(m′ − 1)

)T1−T0
T0

]
(46)

in the edge-sharing situation. In case of a mixture of corner-
and edge-sharing structures, the slope equation is:[

dTg

dR

]
R=0

=

=
q

r

T0

[
1−

(
m(2 + λ(m− 1)2)

m′(2 + λ(m− 1)(m′ − 1))

)T1−T0
T0

]
ln

[
m′

m

]
+ ln

[
2 + λ(m− 1)(m′ − 1)

2 + λ(m− 1)2

] · (47)

One can note that the presence of B−B bonds at the very
beginning of the modification, leads to a lowering of the
slope, due to the presence of the second term inside the
brackets of (45) or (46). It can be also possible to obtain
a negative slope at the origin R = 0 (x = 0), despite an
increase of the coordination number m′ > m and vice-
versa. This is a rather surprising result which contradicts
the first slope equation and which is against the empirical
rule stating that Tg is growing when the connectivity of
the network is growing, and vice-versa. Examples of such
a reverse behavior can be presented. They concern B2S3

and P2S5 based glasses.

• B2S3 based glasses

In the (1−x)B2S3−xM2S systems M = Na,K,Rb,Cs
the glass transition temperature is decreasing when x is
growing, although these compounds show a monotonic in-
crease of tetrahedral boron units N4, in a manner similar
to that found in the oxide glasses (Fig. 8b). The coordi-
nation number of the A configuration is m = 3 (BS3/2

triangle) and m′ = 4 for the B configuration (tetrahedral
boron).

The connectivity of the network is increasing and the
derivative should therefore be positive. According to equa-
tion (45), the unexpected negative slope can be explained
by the presence of B−B bonds in the very low alkali limit,
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Fig. 16. Glass transition temperature (in K)
of (1− x)P2S5 − xLi2S systems. The line rep-
resented has a slope (45) with m = 3, m′ = 2,
T0 = 128 oC and T1 = 177.4 oC. Data are
reported in reference [102].

which yields a negative contribution inside the brackets of
the expression (45). Indeed, the sulfide system exhibits a
very sharp increase of N4 species when R is growing, much
more pronounced than in B2O3 based systems. Martin and
co-workers have studied the short-range order of these sys-
tems by 11B NMR spectroscopy [98] and have shown that
in the sodium glass, the rate of N4 species can be close to
unity already for x ' 0.2, whereas the same rate is always
lower than 0.5 in the oxide glass. According to their spec-
troscopic investigation N4 ' 1.0 when x = 0.2, i.e. at the
measured glass transition temperature T1 = 176 oC [99,
100], and T0 = 583 K [101]. Inserting these values in (45)
yields a negative slope and agrees with the experimental
data of B2S3−Na2S systems in the very low modified glass,
displayed in Figure 14 (solid line). For greater values of x,
Martin suggests that equation (11) is modified [98] and
that N4 ' α

2R with α = 7.82 instead of N4 ' R [38]. This
implies that the right hand side of equation (45) has to be
multiplied by 3.91. The slope equation then predicts the
right Tg(x) behavior up to x ' 0.2 (Fig. 14, dotted line).

The fact that N4−N4 clusters can be produced even at
the very beginning, leading to a negative slope, explains
why the dithioborate group, made of two corner-sharing
N4 species (Fig. 15), should occur very rapidly in these
systems [98], whereas it appears only for x ' 0.2 in the
oxide glass [73].

• P2S5 based glasses

The available glass transition temperature data in these
system concern only the lithium based glasses. The local
structure of P2S5, which has the same stoichiometry than
P2O5, is the same as that in the oxide glass (Fig. 8c).
The SRO singlet of the network former is composed of a
phosphor atom with four P−S bonds, one of them being
double bonded (Q(3) structure). The addition of a modifier
(Li2S) leads to the creation of a Q(2) structure (B config-
uration), sharing one non-bridging sulphur atom, hence

m = 3 and m′ = 2 [83]. The slope at the origin (x ' 0)
should therefore be negative, but this is not observed ex-
perimentally. Tg is increasing from T0 = 128 oC up to
217 oC (at x = 0.66). For x = 0.5, the proposed structure
is the metathiophosphate chain, made of almost 100% Q(2)

structures [102]. The measured glass transition tempera-
ture is T1 = 177.4 oC. Inserting these values (T0, T1, m,
m′) in equation (45) gives the slope at the origin, which
is in very good agreement with the experimental data of
Kennedy [102] (Fig. 16).

Therefore, we can conclude that the B−B doublet ex-
ists already at the very beginning of the modification. This
means that P2S5−Li2S systems display the tendency to
form Q(2)−Q(2) doublets inside the network. This proposi-
tion has been also made by Kennedy and co-workers [102].
In order to explain the increase of Tg, these authors sug-
gest that the modifier may create a stronger ionic bond-
ing formed between fragments that could increase Tg (i.e.

a B−B bonding, Q(2) being the fragment which displays
T1 > T0).

4 Summary and conclusions

In this article, we have shown that there is strong evi-
dence for the existence of a universal relationship between
the glass transition temperature and the local structure in
low-modified glass systems. Based on statistical and ther-
modynamical factors, the model gives the slope at the

origin
[

dTg

dx

]
x=0

for binary glasses (1 − x)ArXq + xMqX

and network glasses AxB1−x. Let us recall the following
important results obtained:

1. The model gives the correct value of the coordina-
tion numbers m and m′ of the involved atoms or the
SRO structures for a great number of systems, such
as corner-sharing glasses (network and binary oxide
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glasses), and edge-sharing glasses (binary chalcogenide
glasses).

2. The sharp decrease of the glass transition temperature
for low modifier concentration is explained by the pres-
ence of a high initial T0 value in the expression of the
slope equation. SiO2 and GeO2 based glasses display
such a behavior.

3. The model yields an analytical expression of the con-
stant β appearing in the modified Gibbs-Di Marzio
equation. The value computed with given m and m′ is
in agreement with the one obtained by a least squares
fit from the experimental data by different authors.

4. It explains that the decrease of Tg despite an increase
of the connectivity of the glass network (and vice-
versa) is due to the presence of local B−B doublets,
a situation which is typical of B2S3 and P2S5 based
glasses, for which the slope equations agree with exper-
imental glass transition temperature measurements.

We believe that these encouraging results can be ex-
tended for any concentration in network and binary glass-
es, and will explain, mathematically, particular shapes of
Tg versus x on the basis of structural considerations. Be-
sides these extensions, the model can also be applied to
three configurations A, B and C, in order to investigate
ternary glass-forming systems. Such attempts will be pre-
sented in forthcoming articles [103].
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